Path Integral Methods for Light Transport Simulation: Theory \& Practice

Introduction to Markov Chain and Sequential Monte Carlo

Markov Chains

Markov Chain

- Random walk implies a transition probability for each move

$$
P\left(x_{n+1}=j \mid x_{n}=i\right) \equiv P_{i \rightarrow j}
$$

- At each move the chain forms a posterior distribution over state space
- A histogram of all visited states up to move n
- Detailed balance defined as $P_{i \rightarrow j}=P_{j \rightarrow i}$

Markov Chain

- Posterior converges to the target distribution if the detailed balance obeyed and all states are reachable (ergodicity)
-With "bad" initial state x_{0} the start-up bias (burn-in phase) can be significant

Metropolis-Hastings Algorithm

Metropolis-Hastings (MH) Algorithm

- Goal: Random walk according to a desired function f
- Define conditional rejection sampling probability

$$
a_{i \rightarrow j}=\frac{f\left(x_{j}\right)}{f\left(x_{i}\right)}=\frac{f_{j}}{f_{i}}
$$

- $a_{i \rightarrow j}$ is acceptance probability at state i for proposal state j
- Detailed balance is affected as $a_{i \rightarrow j} P_{i \rightarrow j}=a_{j \rightarrow i} P_{j \rightarrow i}$
- Posterior distribution is then proportional to f
- Accurate to a scaling factor $=$ normalization constant

Metropolis-Hastings: Example

Metropolis-Hastings: Example

Metropolis-Hastings: Example

$$
a_{x_{1} \rightarrow x_{2}}=\frac{\mathbb{N}\left(x_{2}\right)}{\mathbb{N}\left(x_{1}\right)} \ll 1
$$

Metropolis-Hastings: Example

Metropolis-Hastings: Example

Metropolis-Hastings: Example

Metropolis-Hastings: Example

$$
n=20
$$

Metropolis-Hastings: Example

$$
n=200
$$

Metropolis-Hastings: Example

$$
n=2000
$$

Importance Sampling for $\mathbf{M}-\mathbf{H}$

- Cannot fetch proposals directly from f
- Generate a proposal j from some proposal distribution T
- Similar to importance sampling in Monte Carlo
$-T$ can depend on the current state $i: T_{i \rightarrow j}$
- New transition probability $P_{i \rightarrow j}=a_{i \rightarrow j} T_{i \rightarrow j}$
- Acceptance probability is then (from detailed balance):

$$
a_{i \rightarrow j}=\left(\frac{f_{j}}{T_{i \rightarrow j}}\right) /\left(\frac{f_{i}}{T_{j \rightarrow i}}\right)
$$

Correspondence Table

Ordinary Monte Carlo

Markov chain Monte Carlo

Convergence rate, usually $O\left(\frac{1}{\sqrt{N}}\right)$	Mixing rate, depends on multiple factors, can be geometric $O\left(\gamma^{N}\right), \gamma \in(0 ; 1)$
Convergence to an expected value	Convergence of the posterior to the target distribution (e.g., in total variation)
Importance sampling distribution $p(x)$	Proposal distribution $T_{i \rightarrow j}$
Variance of the estimate	Acceptance rate, correlation of samples
Number of samples	Number of moves (mutations)

Metropolis Light Transport

Image Generation

- Reduce per-pixel integrals to a single integral
- Each pixel has an individual filter function then
- Compute the distribution over the image plane
- Bin this distribution into corresponding pixels
- Walk over the image plane

Metropolis Light Transport

- State space = space of full paths, path space
- What is the function f for light transport?
- Interested in flux arriving at image plane

Measurement Contribution

- Measurement contribution f for k-length path

$$
f\left(\bar{x}_{k}\right)=L_{\mathrm{e}} G\left(\prod_{k-1} \rho_{k} G_{k}\right) W_{\mathrm{e}}
$$

Measurement Contribution

$$
f\left(\bar{x}_{k}\right)=\prod_{k} \frac{d Q}{d A_{k}}=\frac{d Q}{d \mu_{k}}
$$

$$
\left[W /\left(m^{2}\right)^{k}\right]
$$

- Flux through all differential areas of a path

Comparing Paths

- MH needs to compare two states (paths)
- Use flux through the infinitesimal path beam
- Directly comparable for equal-length paths
- Compare flows of energy through each path
- For different lengths the measure is different
- Always compare fluxes going through each path

Path Integral

- For path of length $k: I_{k}=\int_{\Omega_{k}} f(\bar{x}) d \mu_{k}(\bar{x})$
- Combine all path lengths into a single integral
- Use unified measure for all paths

$$
d \mu(D)=\sum_{k=1}^{\infty} d \mu_{k}\left(D \cap \Omega_{k}\right)
$$

- Compare paths of different length
- Compare groups of paths
- Use f in Metropolis-Hastings!

Metropolis Light Transport

1. Generate initial path \bar{x}_{0} using PT/BDPT
2. Mutate with some proposal distribution $T_{\bar{x}_{i} \rightarrow \bar{x}_{j}}$
3. Accept new path \bar{x}_{j} with probability $a_{\bar{x}_{i} \rightarrow \bar{x}_{j}}$
4. Accumulate contribution to the image plane 5. Go to step 2

Advantages

- More robust to complex light paths
- Remembers successful paths
- Utilizes coherence of image pixels
- Explores features faster
- Cheaper samples
- Correlated
- Flexible path generators (mutations)

Energy redistribution path tracing [Clineo5]

- Run many short Markov chains for each seed
- Adaptive number of chains according to path energy
- In spirit of Veach's lens mutation

Normalization and Start-up Bias in MLT

Differences to MCMC

- We do have a good alternative sampler
- Path tracer / bidirectional path tracer
- Easy to compute normalization constant
- No start-up bias, start within the equilibrium
- Start many chains stratified over path space
- Scales well with massively parallel MLT

Mutation Strategies and Their Properties

Good Mutation Criteria

- Lightweight mutation: change a few vertices
- Low correlation of samples
- Large steps in path space
- Good stratification over the image plane
- Hard to control, usually done by re-seeding
- It's OK to have many specialized mutations

Existing Mutation Strategies

Veach Mutations

- Minimal changes to the path
- Lens, caustics, multi-chain perturbations
- Large changes to the path
- Bidirectional mutation
- BDPT-like large step
- Lens mutation
- stratified seeding on the image plane

Bidirectional mutation

Kelemen Mutation

- Mutate a "random" vector that maps to a path
- Symmetric perturbation of "random" numbers
- Use the "random" vector for importance pdfs
- Primary space: importance function domain
- Assume the importance sampling is good

Kelemen Mutation, Part II

- Acceptance probability $a_{i \rightarrow j}=\left(f_{j} / p_{j}\right) /\left(f_{i} / p_{i}\right)$
- Easy to compute: just take values from PT/BDPT
- Large step: pure PT / BDPT step
- Generate primary sample (random vector) anew

Manifold Exploration Mutation

- Works in the local parameterization of current path
- Can connect through a specular chain
- Freezes integration dimensions
- Tries to keep f constant by obeying constraints

Combinations

- Manifold exploration can be combined
- With Veach mutation strategies in MLT
- With energy redistribution path tracing
- Combine Kelemen's and Veach's mutations?
- Possible, yet unexplored option

Population Monte Carlo Light Transport

Population Monte Carlo Framework

- Use a population of Markov chains
- Can operate on top of Metropolis-Hastings
- Rebalance the workload
- Weakest chains are eliminated
- Strongest chains are forked into multiple
- Use mixture of mutations, adapt to the data
- Select optimal mutation on the fly

Population Monte Carlo ERPT [Laio7]

- Spawn a population of chains with paths
- Do elimination and reseeding based on path energy
- Use many mutations with different parameters
- Reweight them on-the-fly based on the efficiency
- Lens and caustics perturbations in the original paper
- We will show PMC with manifold exploration

Thank You for Your attention. Part one questions?

