Path Integral Methods for Light Transport Simulation: Theory & Practice

Introduction to Markov Chain and Sequential Monte Carlo

Markov Chains

Markov Chain

- Random walk implies a *transition probability* for each move $P(x_{n+1} = j | x_n = i) \equiv P_{i \rightarrow j}$
- At each move the chain forms a *posterior distribution* over state space
 - A histogram of all visited states up to move *n*
- *Detailed balance* defined as $P_{i \rightarrow j} = P_{j \rightarrow i}$

Markov Chain

•Posterior converges to the *target* distribution *if* the detailed balance obeyed and all states are reachable (*ergodicity*)

•With "bad" initial state x_0 the *start-up bias* (burn-in phase) can be significant

Metropolis-Hastings Algorithm

Metropolis-Hastings (MH) Algorithm

- Goal: Random walk according to a desired function *f*
- Define conditional rejection sampling probability

$$a_{i \to j} = \frac{f(x_j)}{f(x_i)} = \frac{f_j}{f_i}$$

- $a_{i \rightarrow j}$ is acceptance probability at state *i* for proposal state *j*

- Detailed balance is affected as $a_{i \rightarrow j} P_{i \rightarrow j} = a_{j \rightarrow i} P_{j \rightarrow i}$
- Posterior distribution is then proportional to *f*
 - Accurate to a scaling factor = normalization constant

 $a_{x_1 \to x_2} = \frac{\mathbb{N}(x_2)}{\mathbb{N}(x_1)} \ll 1$

n = 20

n = 200

n = 2000

Importance Sampling for M-H

- Cannot fetch proposals directly from *f*
- Generate a proposal *j* from some *proposal distribution T*
 - Similar to importance sampling in Monte Carlo
 - *T* can depend on the current state $i: T_{i \to j}$
 - New transition probability $P_{i \rightarrow j} = a_{i \rightarrow j} T_{i \rightarrow j}$
- Acceptance probability is then (from detailed balance):

$$a_{i \to j} = \left(\frac{f_j}{T_{i \to j}}\right) / \left(\frac{f_i}{T_{j \to i}}\right)$$

Correspondence Table

Ordinary Monte Carlo	Markov chain Monte Carlo
Convergence rate, usually $O(\frac{1}{\sqrt{N}})$	Mixing rate, depends on multiple factors, can be geometric $O(\gamma^N), \gamma \in (0; 1)$
Convergence to an expected value	Convergence of the posterior to the target distribution (e.g., in total variation)
Importance sampling distribution $p(x)$	Proposal distribution $T_{i \rightarrow j}$
Variance of the estimate	Acceptance rate, correlation of samples
Number of samples	Number of moves (mutations)

Metropolis Light Transport

Image Generation

- Reduce per-pixel integrals to a single integral
 - Each pixel has an individual filter function then
- Compute the distribution over the image plane
 - Bin this distribution into corresponding pixels
- Walk over the image plane

Metropolis Light Transport

2

- State space = space of full paths, *path space*
- What is the function *f* for light transport?
- Interested in flux arriving at image plane

Measurement Contribution

Measurement contribution *f* for *k*-length path

$$f(\bar{x}_k) = L_{\rm e}G\left(\prod_{k=1}\rho_k G_k\right) W_{\rm e}$$

Measurement Contribution

Comparing Paths

- MH needs to compare two states (paths)
 - Use flux through the infinitesimal path beam
- Directly comparable for equal-length paths
 - Compare flows of energy through each path
- For different lengths the measure is different
 - Always compare fluxes going through each path

Path Integral

- For path of length $k: I_k = \int_{\Omega_k} f(\bar{x}) d\mu_k(\bar{x})$
- Combine all path lengths into a single integral
 - Use unified measure for all paths $d\mu(D) = \sum_{k=1}^{\infty} d\mu_k (D \cap \Omega_k)$
 - Compare paths of different length
 - Compare groups of paths
- Use f in Metropolis-Hastings!

Metropolis Light Transport

- **1.** Generate initial path \bar{x}_0 using PT/BDPT
- **2.** Mutate with some proposal distribution $T_{\bar{x}_i \to \bar{x}_i}$
- **3.** Accept new path \bar{x}_j with probability $a_{\bar{x}_i \to \bar{x}_j}$
- 4. Accumulate contribution to the image plane
- 5. Go to step 2

Advantages

Streeburg 2014

- More robust to complex light paths
 - Remembers successful paths
- Utilizes coherence of image pixels
 - Explores features faster
- Cheaper samples
 - Correlated
- Flexible path generators (mutations)

Energy redistribution path tracing [Cline05]

- Run many short Markov chains for each seed
- Adaptive number of chains according to path energy
- In spirit of Veach's lens mutation

Normalization and Start-up Bias in MLT

Differences to MCMC

- We *do* have a good alternative sampler
 - Path tracer / bidirectional path tracer
 - Easy to compute normalization constant
- No start-up bias, start within the equilibrium
 - Start many chains stratified over path space
 - Scales well with massively parallel MLT

Mutation Strategies and Their Properties

Good Mutation Criteria

Streeburg 2014

- Lightweight mutation: change a few vertices
- Low correlation of samples
 - Large steps in path space
- Good stratification over the image plane
 - Hard to control, usually done by re-seeding
- It's OK to have many specialized mutations

Existing Mutation Strategies

Veach Mutations

- Minimal changes to the path
 - Lens, caustics, multi-chain perturbations
- Large changes to the path
 - Bidirectional mutation
 - BDPT-like large step
 - Lens mutation
 - stratified seeding on the image plane

Kelemen Mutation

- Mutate a "random" vector that maps to a path
- Symmetric perturbation of "random" numbers
- Use the "random" vector for importance pdfs
 - Primary space: importance function domain
 - Assume the importance sampling is good

Kelemen Mutation, Part II

- Acceptance probability $a_{i \to j} = (f_j / p_j) / (f_i / p_i)$
 - Easy to compute: just take values from PT/BDPT
- Large step: pure PT / BDPT step
 - Generate primary sample (random vector) anew

Manifold Exploration Mutation

Streiburg 2014

- Works in the local parameterization of current path
- Can connect through a specular chain
- Freezes integration dimensions
 - Tries to keep *f* constant by obeying constraints

Combinations

- Manifold exploration can be combined
 - With Veach mutation strategies in MLT
 - With energy redistribution path tracing
- Combine Kelemen's and Veach's mutations?
 - Possible, yet unexplored option

Population Monte Carlo Light Transport

Population Monte Carlo Framework

- Use a *population* of Markov chains
 - Can operate on top of Metropolis-Hastings
- Rebalance the workload
 - Weakest chains are eliminated
 - Strongest chains are forked into multiple
- Use mixture of mutations, adapt to the data
 - Select optimal mutation on the fly

Population Monte Carlo ERPT [Lai07]

- Spawn a population of chains with paths
 - Do elimination and reseeding based on path energy
- Use many mutations with different parameters
 - Reweight them on-the-fly based on the efficiency
 - Lens and caustics perturbations in the original paper
- We will show PMC with manifold exploration

Thank You for Your attention. **Part one questions?**